Skip to content
Hifumi's Study Notes📕Cegep 1CalculusProduct Rule

%% Derivative %%

Product Rule ​

Tags
Cegep1
Calculus
Word count
170 words
Reading time
2 minutes

Let f and g be two differentiable functions, then

ddx(f(x)g(x))=f(x)g′(x)+g(x)f′(x)

The rule extends to >2 functions:

ddx(f(x)g(x)h(x))=f′(x)g(x)h(x)+g′(x)f(x)h(x)+h′(x)f(x)g(x)

Proof ​

Let p(x)=f(x)g(x), then

ddx(f(x)g(x))=p′(x)=limh→0p(x+h)−p(x)h=limh→0f(x+h)g(x+h)−f(x)g(x)h⟹=limh→0f(x+h)g(x+h)−f(x+h)g(x)+f(x+h)g(x)−f(x)g(x)h=limh→0f(x+h)(g(x+h)−g(x))+g(x)(f(x+h)−f(x))h=limh→0(f(x+h)(g(x+h)−g(x))h+g(x)(f(x+h)−f(x))h)=limh→0f(x+h)(g(x+h)−g(x))h+limh→0g(x)(f(x+h)−f(x))h=limh→0f(x+h)limh→0g(x+h)−g(x)h+g(x)limh→0f(x+h)−f(x)h=f(x)g′(x)+g(x)f′(x)

Contributors

Changelog